
1

RFID Data Processing in Supply Chain

Management using a Path Encoding Scheme

Chun-Hee Lee, Chin-Wan Chung

November 20, 2009 DRAFT

2

Abstract

RFID technology can be applied to a broad range of areas. In particular, RFID is very useful in

the area of business, such as supply chain management. However, the amount of RFID data in such an

environment is huge. Therefore, much time is needed to extract valuable information from RFID data

for supply chain management. In this paper, we present an efficient method to process a massive amount

of RFID data for supply chain management. We first define query templates to analyze the supply chain.

We then propose an effective path encoding scheme that encodes the flows of products. However, if the

flows are long, the numbers in the path encoding scheme that correspond to the flows will be very large.

We solve this by providing a method that divides flows. To retrieve the time information for products

efficiently, we utilize a numbering scheme for the XML area. Based on the path encoding scheme and

the numbering scheme, we devise a storage scheme that can process tracking queries and path oriented

queries efficiently on an RDBMS. Finally, we propose a method that translates the queries to SQL

queries. Experimental results show that our approach can process the queries efficiently.

Index Terms

RFID, Supply Chain Management, Path Encoding Scheme, Prime Number

I. I NTRODUCTION

As the size of the RFID tag becomes smaller and the price of the RFID tag gets lower, RFID

technology has been applied to many areas. It is different from existing technologies, such as

barcode systems and magnetic card systems, in that barcode systems and magnetic card systems

require contact between a detector and an object. RFID readers in RFID systems, on the other

hand, can detect RFID tags without contact.

A typical example of RFID technology being used is supply chain management. In supply

chain management, in order to know the movements of products easily, an RFID tag is attached

to a product. If the product with an RFID tag moves or stays near the detection region, RFID

readers will detect RFID tags, and the detected information will be generated in the form of (tag

identifier 1, location, time). As the flow of the product is detected easily by RFID technology,

it is observed that RFID can be used to revolutionize supply chain management.

1As a tag identifier, RFID systems use EPC (Electronic Product Code) [2], which is a coding scheme of RFID tags, to identify

the tags uniquely.

November 20, 2009 DRAFT

3

The RFID data generated in each region (i.e., (tag identifier, location, time)) is sent to the

central server. Then, the data is transformed into stay records in the form of (tag identifier,

location, start time, end time). While raw RFID data has many duplicates, the transformed data

(i.e., stay records) does not have duplicates. We can represent how long a tag stays at a location

by thestart time andend time of stay records. The stay records for each tag compose a trace

record that gives us movement history with time information for the tag. In this paper, we will

use trace records instead of stay records for storing RFID data in the central server.

We can store RFID data in a relational table BASICTABLE(TAG ID, LOC, START TIME,

END TIME) as a straightforward method, where TAGID represents the tag identifier, LOC the

location, STARTTIME the time when the tag enters the location, and ENDTIME the time

when the tag leaves the location. The queries that analyze the supply chain are related to the

product transition. For example, a manager may ask the query ”Find the number of laptops

that go through locationsFactory1, Distribution Center1, andStore1.” To evaluate the query

with BASIC TABLE, we must perform self-joins of BASICTABLE many times. Also, the

size of BASICTABLE is big. Therefore, it requires a lot of time to execute the query with

BASIC TABLE.

To support efficient path dependent aggregates for RFID data, Gonzalez et al. propose a new

warehousing model [14]. In the model, STAYTABLE(GID, LOC, START TIME, END TIME,

COUNT) is used to store RFID data efficiently. In many RFID applications, products usually

move together in large groups during the early stages, and move in small groups during the later

stages. Therefore, they represent stay records with the same location and time by one record such

as (tag identifier list, location, start time, end time, the number of tags with the same location

and time). To link locations efficiently (i.e., to perform self-joins of STAYTABLE efficiently),

the tag identifier list is encoded by the prefix encoding scheme. The value of the prefix encoding

scheme corresponds to GID in STAYTABLE. To know whether two locations (A and B) are

linked, the prefix encoding scheme checks whether the GID that corresponds to A is the prefix

of the GID that corresponds to B.

Therefore, the approach by Gonzalez et al. [14] reduces the size of the table significantly and

improves the join cost. However, if products do not move together in large groups, the size of

the table will not be largely reduced. In this case, the performance of the approach by Gonzalez

et al. does not have a great benefit compared to that of the approach with BASICTABLE. Also,

November 20, 2009 DRAFT

4

since the prefix encoding scheme uses a string comparison in joining tables, it needs much more

time than a number comparison. Thus, we propose a new approach to store RFID data and

process queries for supply chain management. Since the queries related to the object transition

in supply chain management was not defined formally in [14], we first define query templates

for tracking queries and path oriented queries to analyze the supply chain. Then, to solve the

above drawbacks, we propose a new approach.

While Gonzalez et al. [14] focus on groups in which products move together, we focus on the

movement for each tag. The movement of one tag makes a path in supply chain management.

Therefore, we devise a path encoding scheme to process tracking queries and path oriented

queries efficiently. The proposed path encoding scheme can encode a path with only two numbers,

which is motivated by Wu et al. [39]. The numbers are called Element List Encoding Number

and Order Encoding Number, and will be explained in detail subsequently. In [39], in order

to determine whether a relationship exists between two elements in an XML tree, a property

of prime numbers is used. In addition, to preserve the global order for elements, simultaneous

congruence values are used. In this paper, we use the property of prime numbers to encode

nodes in a path, and simultaneous congruence values to encode the ordering among nodes in

the path. Our encoding scheme is based on the Fundamental Theorem of Arithmetic and the

Chinese Remainder Theorem. Using the proposed path encoding scheme, we can efficiently

retrieve paths that satisfy the path condition in a query. To store the time information related to

the movement, we separate the time information from trace records. We use the region numbering

scheme [40], which is widely used in the XML area, in order to retrieve the time information

efficiently. Based on the path encoding scheme and the region numbering scheme, we devise a

new relational schema to store the path information and the time information for tags.

If a path is long, its Element List Encoding Number and Order Encoding Number are very

large and an RDBMS may not support the data type for storing very large numbers. Although

we can implement our encoding scheme on a special purpose database engine, it has many

disadvantages. Therefore, we propose a method to divide a path. If we cannot store a path by

using one attribute in an RDBMS, we divide the path into multiple path segments, each of which

can be stored by using one attribute.

Based on the encoding schemes described above, we translate query templates into SQL

queries. However, in the case of dividing paths, the SQL translation is not straightforward due

November 20, 2009 DRAFT

5

to the computation overflow. Therefore, we propose a method to translate query templates into

SQL queries, which do not cause the computation overflow, by using mathematical analyses.

A. Contributions

The contributions of the paper are as follows:

• Encoding Scheme to Encode Flows of ProductsTo support tracking queries and path

oriented queries efficiently, we propose a path encoding scheme for flows of products.

Element List Encoding Number is computed by the product of the prime numbers that

correspond to the nodes in a path. Based on the Chinese Remainder Theorem, Order

Encoding Number is computed. By using the two numbers, we can easily find paths that

satisfy the path condition.

• Efficient Relational Schema and Query TranslationWe propose an efficient relational

schema with the path encoding scheme and the region numbering scheme. Based on the

schema, we propose a method that translates tracking queries and path oriented queries into

SQL queries.

• Effective Method to Store Long PathsA long path is common in typical supply chain

management. The product of prime numbers for a long path can become excessively large,

which can cause a limit to the path length. To avoid overflows in storing large numbers,

we provide a method that divides the long path into several path segments.

• Extended Query Translation for Handling Long Paths When we store a long path by

dividing the path, the computation overflow may occur during the execution of the translated

SQL query. To overcome the computation overflow, we extend the method to translate query

templates into SQL queries by using mathematical formulas.

• Defining of Query Templates to Analyze the Supply ChainWe define query templates

to analyze the supply chain. We consider query templates for tracking queries and path

oriented queries. For path oriented queries, we provide a grammar to effectively express the

path condition for products like XPath [3].

• Experimentation to Validate Our Proposed Approach Through extensive experiments,

we show that our approach is efficient. Experimental results show that the query performance

of our approach is better than the recent approach in most queries.

November 20, 2009 DRAFT

6

B. Organization

The rest of the paper is organized as follows. In Section II, we discuss related work on

managing RFID data. In Section III, we deal with data formats and define query templates for

tracking queries and path oriented queries in supply chain management. We show the architecture

that stores RFID data and process queries in Section IV. We describe our path encoding scheme

in Section V and devise a storage scheme based on our path encoding scheme in Section VI.

We propose a method to translate tracking queries and path oriented queries into SQL queries

in Section VII, and experimentally show the superiority of our approach in Section VIII. We

make a conclusion in Section IX.

II. RELATED WORK

In contrast to the initial study for RFID, which focuses on the device, many studies have been

done recently to manage RFID data as the amount of RFID data has become large.

The system architecture for managing RFID data is discussed in [8], [11], [17]. Bornhövd

et al. [8] describe the Auto-ID infrastructure (Device Layer/Deivce Operation Layer/Business

Processing Bridging Layer/Enerpise Application Layer). The Auto-ID infrastructure integrates

data from smart items such as RFID and sensor with existing business processes. Chawathe et

al. [11] suggest a layered architecture for managing RFID data (Tag/Reader/Savant/EPC-IS/ONS

server). In the work of Hag et al. [17], two software layers are proposed: the ubiquity agent

architecture and the tag centric RFID application architecture. The ubiquity agent architecture

is for a general-purpose core architecture. The tag centric RFID application architecture is for

the RFID application architecture that specializes the generic agent architecture.

RFID data is generated in the form of streaming data and then it is stored in a database

for data analyses. Therefore, there are two types of approaches for managing RFID data. One

approach is on-line processing for RFID data and it is related to data stream processing [5], [6],

[19], [36]. The other approach is off-line processing and it is related to stored data processing

[4], [7], [13], [14], [18], [29], [35].

In the aspect of viewing RFID data as data streams, event processing and data cleaning have

been studied. RFID data has a temporal property, which is important in analyzing data. Therefore,

a temporal RFID event can be defined. However, this cannot be well supported by traditional ECA

(Event-Condition-Action) rule systems. Therefore, Wang et al. [36] formalize the specification

November 20, 2009 DRAFT

7

and semantics of RFID events and rules including temporal RFID events. Also, they propose a

method to detect RFID complex events efficiently. Bai et al. [6] explore the limitation of SQL

queries in supporting temporal event detection and discuss an SQL-based stream query language

to provide comprehensive temporal event detection.

Inevitably, RFID data has some errors, such as duplicate readings and missing readings.

To rescue missing readings, the first declarative and adaptive smoothing filter for RFID data

(SMURF) [19] is proposed. SMURF controls the window size of the smoothing filter adaptively

using statistical sampling. Also, Bai et al. [5] propose several methods to filter RFID data.

In the aspect of viewing RFID data as stored data, various approaches exist that can manage

RFID data. Since RFID readers can detect RFID tags easily and quickly, object tracking that

uses RFID is widely used. To trace tag locations, a new index is proposed by Ban et al. [7].

They point out the problem of representing trajectories in RFID data and propose a new data

model to solve it. Also, they devise a new index scheme called the Time Parameterized Interval

R-Tree as a variant of the R-Tree. In order to represent a collection of tag identifiers generated

by item tracking applications compactly, a bitmap data type is proposed and a set of bitmap

access and manipulation routines is provided in [18]. Agrawal et al. [4] deal with the tracing

of items in distributed RFID databases. They introduce the concept of traceability networks and

propose an architecture for traceability query processing in distributed RFID databases.

Since RFID data has a temporal property, it is difficult to model RFID data by using the

traditional ER-model. Therefore, Wang et al. [35] propose a new model called the Dynamic

Relationship ER Model (DRER) which simply adds a new relationship (dynamic relationship).

They also propose methods to express temporal queries based on DRER by using SQL queries.

Although we can use the above techniques, such as indexes and bitmap data types, to process

tracking queries and path oriented queries, it is inefficient to process the queries since they do

no consider the object transition.

Gonzalez et al. [14] propose a new warehousing model for the object transition and a method

to process a path selection query. To get aggregate measures on a path, they join tables many

times. Therefore, they use compression in order to reduce the join cost. However, the proposed

compression is useless if products do not move together in large groups.

A preliminary version of this work appeared in [22]. While an efficient storage scheme and

query processing for RFID data in supply chain management were proposed by Lee and Chung

November 20, 2009 DRAFT

8

[22], they cannot be applied when the path length is large since Element List Encoding Number

and Order Encoding Number cannot be stored by using the data types that an RDBMS supports.

Long paths are common in typical supply chain management because there are many checkpoints

in a route. In such a case, the work of Lee and Chung [22] should be implemented on a special-

purpose DBMS that can support very large numbers.

To solve the problem, we propose a method to divide a long path. By dividing the path, we can

store the long path without modifying an RDBMS or implementing a special purpose database

engine. However, in the case of dividing the path, if we use the translation method proposed

in [22], computation overflow may occur. Therefore, we provide a method to translate query

templates into SQL queries, which do not cause the computation overflow, by mathematical

analyses. Also, we redo the entire experiment with data sets generated from a real-life example

and additional queries. In addition, managing object transitions has been dealt with in various

areas with different views and terminologies.

In the vehicle tracking area, most papers focus on how to detect and track vehicle objects than

how to manage the generated tracking data. To track vehicles, video cameras are generally used

[16], [20], [21]. To detect and track vehicles from video streams efficiently, Kanhere et al. [20]

and Kim et al. [21] propose image processing-based methods while Haidarian-Shahri et al. [16]

use a graph-based approach. They do not consider how to manage the tracking data for vehicles.

In this paper, we focus on managing the flows of products that are similar to the tracking data.

In XML databases, the path information can be stored in XML data format. In [10], [25],

[34], XML data can be represented as a compact data (i.e., compressed data) and direct query

processing is available in such a compact representation. Also, to index and query XML data,

various approaches are proposed [23], [24], [30], [33], [37], [39], [40]. However, in an environ-

ment where so much path data is generated, the existing approaches in the XML area cannot

manage and analyze the path information for products efficiently since they do not focus on

many ancestor/descendant relationships in a query.

In spatio-temporal databases, the data generated from moving objects (e.g., vehicles) is ma-

nipulated. As moving objects go around, the object movement information is generated and its

collection composes the trajectories of moving objects. In [12], [15], the data structure and model

for moving objects are proposed. Also, in [26]–[28], [32], [38], to index and query the data from

moving objects, various index structures and algorithms are used. In the aspect of representing

November 20, 2009 DRAFT

9

object movements, the trajectory data of moving objects and the flow information of products in

supply chain management using RFID are similar. Both the trajectories of moving objects and

the flow information of products can be represented as the set of<ObjectID, Location, Time>.

However, the locations of products in RFID applications are limited since they are detected

through the fixed RFID readers. In contrast, the locations of moving objects in spatio-temporal

databases are not limited. Also, in spatio-temporal databases, most queries are related to the

locations of objects (e.g., k-nearest neighbor query, range query) rather than the flow of objects.

Therefore, query processings in these two areas are quite different, although the data can be

represented in a similar format.

III. PROBLEM DEFINITION

Raw RFID data consists of a set of triples (TagID, Loc, Time), where

• TagID is the Electronic Product Code (EPC) of the tag and is used for identifying the tag

uniquely.

• Loc is the location of the RFID reader which detects the tag

• Time is the time of detecting the tag

We translate raw RFID data generated in supply chain management into a set of stay records

that do not have duplicates. A stay record has the form (TagID, Loc, StartTime, EndTime), where

• TagID andLoc are the same as above

• StartTimeis the time when the tag enters the location

• EndTimeis the time when the tag leaves the location

From the stay records of a tag, we can construct the trace record of the tag in the form of

TagID: L1[S1, E1]− > · · · − > Ln[Sn, En], whereL1, · · · , Ln are the locations where the tag is

detected,Si is StartT ime at the locationLi, Ei is EndTime at the locationLi, andLi[Si, Ei]

is ordered bySi. We use a set of trace records instead of raw RFID data in our systems.

Example 1:Figure 1-(a) shows raw RFID data and Figure 1-(b) shows a set of trace records

that corresponds to raw RFID data. From (tag1, A, 2) and (tag1, A, 3), we get the stay record

(tag1, A, 2, 3). Similarly, we can compute stay records (tag1, B, 5, 7), and (tag1, C, 8, 9) for

tag1. Finally, we can compute the trace record,tag1 : A[2, 3]− > B[5, 7]− > C[8, 9].

To analyze the supply chain, we use queries for the object transition. Although Gonzalez et

al. [14] use a path selection query, it is insufficient to express the relationship between locations.

November 20, 2009 DRAFT

10

(tag1, A, 2), (tag4, A, 2), (tag2, A, 2), (tag3, A, 2), (tag1, A, 3),
(tag2, A, 3), (tag4, A, 3), (tag3, A, 3), (tag3, B, 5), (tag1, B, 5),
(tag2, B, 5), (tag4, B, 5), (tag1, B, 6), (tag4, B, 6), (tag3, B, 7),
(tag1, B, 7), (tag2, B, 7), (tag4, B, 7), (tag2, C, 8), (tag1, C, 8),
(tag3, C, 8), (tag3, C, 9), (tag1, C, 9), (tag2, C, 9), (tag4, C, 13),
(tag4, C, 14), (tag4, C, 16)

tag1: A[2,3]->B[5,7]->C[8,9]

tag2: A[2,3]->B[5,7]->C[8,9]

tag3: A[2,3]->B[5,7]->C[8,9]

tag4: A[2,3]->B[5,7]->D[13,16]

(a) Raw data (b) Trace records

Fig. 1. Raw Data and Trace Records

Therefore, we define query templates to analyze the supply chain. We consider query templates

for tracking queries and path oriented queries. The tracking query finds the movement history

for the given tag. The path oriented query is classified into the path oriented retrieval query

and the path oriented aggregate query. The path oriented retrieval query finds tags that satisfy

given conditions (including a path condition) and the path oriented aggregate query computes

the aggregate value for tags that satisfy given conditions (including a path condition). In query

templates for the path oriented retrieval query and the path oriented aggregate query, we provide

a grammar to effectively express path conditions for products like XPath [3].

Figure 2 shows the formal definition for query templates in supply chain management. There

are three query templates (tracking query, path oriented retrieval query, path oriented aggregate

query). The query template for a tracking query has only a tag identifier to trace the tag. The

path oriented retrieval query consists of Path Condition and Info Condition. The path oriented

aggregate query needs Aggregate Function as well as Path Condition and Info Condition. Path

Condition uses a grammar similar to XPath. Path Condition consists of a Step sequence. Each

Step has a parent axis (/) or an ancestor axis (//). Also, each Step may have Time Conditions.

Time Condition is the predicate forStartT ime and EndTime. The argument for Aggregate

Function (i.e., Time Selection) allows only the time information. We can express various queries

in supply chain management by using the query templates in Figure 2. We show some examples

for tracking queries and path oriented queries in Figure 3.

Our problem definition is as follows: For an environment where there is a large amount

of RFID data in supply chain management and users issue tracking queries and path oriented

queries, devise an efficient storage scheme and processing method for the queries.

November 20, 2009 DRAFT

11

[1] Tracking Query= <TagID = id>
[2] Path Oriented Retrieval Query = <PathCondition, InfoCondition>
[3] Path Oriented Aggregate Query = <AggregateFunction, PathCondition, InfoCondition>

PathCondition -> (Step)*
Step-> /Loc[TimeCondition] | //Loc[TimeCondition]
AggregateFunction->count() | sum(TimeSelection) | avg(TimeSelection)

| max(TimeSelection) | min(TimeSelection)
TimeSelection -> Loc.StartTime | Loc.EndTime | Loc.EndTime – Loc.StartTime

* Info Table has the information for tags such as product name, manufacturer, and price. Info Condition is
the predicate for the attributes of Info Table and may be empty (Ex. Product Name = ‘ laptop’ , Price>10000).

** Time Condition is the predicate for start time and end time (Ex. StartTime > 5, EndTime<10).

*** Loc is the location name of a detection region.

Fig. 2. Query Templates for Tracking Queries and Path Oriented Queries

Semantics Query

Find the movement history for the tag whose identifier is
XXX (Tracking Query).

TagID = XXX

Find the tags that go through locations L1, ..., Ln

(Path Oriented Retrieval Query).

<//L1//...//Ln>

Find the tags that go through locations L1, ..., Ln where the
duration at L1 is less than T (Path Oriented Retrieval Query).

<//L1 [(EndTime-StartTime)<T]//..//Ln>

Find the average duration time at L2 for tags that go from L1

directly to L2 (Path Oriented Aggregation Query).
<avg(L2.EndTime - L2.StartTime), //L1/L2>

Find the minimum start time at L2 for laptops that go from L1

to L2 (Path Oriented Aggregation Query).
<min(L2.StartTime), //L1//L2,
ProductName=‘ laptop’>

Fig. 3. Examples for Tracking Queries and Path Oriented Queries

IV. A RCHITECTURE

Figure 4 shows the architecture to store RFID data, and process tracking queries and path

oriented queries in supply chain management. The central server receives raw RFID data from

various regions whose format is(TagID, Loc, T ime). The raw RFID data is transformed into

trace records after sorting the RFID data by the tag identifier and the time (i.e.,TagID :

Loc1[S1, E1]− > · · · − > Locn[Sn, En]). The path information in the trace records is stored by

using Element List Encoding Number and Order Encoding Number and the time information

in the trace records is stored by using Region Number. Since we use prime numbers instead

November 20, 2009 DRAFT

12

Trace Records:
TagID: L1[S1, E1]

� … � Ln[Sn, En]

Storage Scheme:
Path � (Element List Encoding Number,

Order Encoding Number)
Time � Region Number

(Location, Prime Number)
Memory

Query Translator

RDBMS
PATH_TABLE, TAG_TABLE, TIME_TABLE

Raw Data:
(ID, Loc, Time)

Query
(Tracking Query, Path Oriented Retrieval
Query, Path Oriented Aggregate Query)

Result

Fig. 4. Architecture

of location names, the (Location, Prime Number) list is kept in memory as a hash structure.

Based on the above encoding schemes, we store trace records by using the relational schema

(PATH TABLE, TAG TABLE, and TIME TABLE). If a user requests a tracking query, a path

oriented retrieval query, or a path oriented aggregate query, Query Translator translates it into

an SQL query. Then, the SQL query is processed by an RDBMS and the result is sent to the

user.

V. PATH ENCODING SCHEME FORTAG MOVEMENTS

In this section, we devise a new path encoding scheme to represent tag movements compactly

and efficiently. A product with an RFID tag goes through many locations. Its movements are

represented by trace records in the form ofTagID: L1[S1, E1]− > · · · − > Ln[Sn, En]. In

supply chain management, it is important to analyze the object transition. To manage the object

transition efficiently, we first extract the flow information from trace records, and it composes

the pathL1− > · · · − > Ln. We then propose a path encoding scheme for encoding the path

L1− > · · · − > Ln in order to analyze the object transition efficiently.

tag1: A[2,3]->B[5,7]->C[8,9]
tag2: A[2,3]->B[5,7]->C[8,9]
tag3: A[2,3]->B[5,7]->C[8,9]
tag4: A[2,3]->B[5,7]->D[13,16]
tag5: A[2,3]->B[7,8]->D[14,18]

tag6: A[2,3]->E[4,6]->C[7,8]
tag7: A[2,3]->E[4,6]->C[7,8]
tag8: A[2,3]->E[4,6]
tag9: A[2,3]->D[4,5]
tag10: A[2,3]->D[5,6]

Fig. 5. Example of Trace Records

November 20, 2009 DRAFT

13

We can represent different paths for each product by a tree structure. Figure 6 shows the tree

structure for trace records in Figure 5. We assume that there is no cycle in a path. However, we

will explain how to store and query paths with cycles later. The path of each tag composes the

tree by eliminating duplicate nodes. The numbers beside the nodes are prime numbers, which

will be explained subsequently. In Figure 6, the dark nodes mean that there are tags whose final

location is the node. We store all paths that end at dark nodes, which areA− > B− > C,

A− > B− > D, A− > E, A− > E− > C, andA− > D. Although a huge amount of RFID

data is generated, the size of the tree is small.

A

B E D

C D C

2

3

55 7

711

Fig. 6. Tree Structure for the Trace Records

To encode a path, we can consider various techniques in the XML area [23], [25], [30], [33],

[37], [39], [40]. However, those techniques are inefficient in processing queries that have many

ancestor-descendant relationships, such as ”Find the tags that go through locationsL1, L2, L3

(//L1//L2//L3).” In supply chain management, we need such queries to analyze the flows of

tags. Before proposing a new path encoding scheme, we introduce two well known theorems

[31].

Theorem 1:The Fundamental Theorem of Arithmetic (The Unique Factorization Theorem):

Any natural number greater than 1 is uniquely expressed by the product of prime numbers.

For example,231 = 3× 7× 11 and the product of any other prime number combination for

231 does not exist.

Theorem 2:The Chinese Remainder Theorem: Suppose thatp1, p2, · · · , and pn are pairwise

relatively prime numbers. Then, there existsX with 0 ≤ X < p1p2 · · · pn which solves the

system of simultaneous congruences.

November 20, 2009 DRAFT

14

X mod p1 = a1

X mod p2 = a2

· · ·

X mod pn = an

For example, consider the system of simultaneous congruences, such asX mod 3 = 2, X mod 7 =

3, and X mod 11 = 2. Then, by Theorem 2, there existsX with 0 ≤ X < 3× 7× 11. In this

example,X is 101. We can computeX by using the method in [1].

Let L1− > L2− > ...− > Ln be a path to encode. Suppose that each location is associated

with a different prime number, the nodes with the same location have the same prime number,

and the prime number for locationLi is denoted byPrime(Li). Then, we define Element List

Encoding Number for the pathL1− > L2− > ...− > Ln as Prime(L1) × Prime(L2) ×
· · · × Prime(Ln). If Element List Encoding Number is given, we can know the locations that

compose the path since Element List Encoding Number is uniquely factorized by the product

of prime numbers that correspond to locations by Theorem 1. However, although we know the

locations in the path by Element List Encoding Number, we cannot know the ordering between

the locations. To encode the ordering information compactly and efficiently, we consider the

system of simultaneous congruences.

X mod Prime(L1) = 1

X mod Prime(L2) = 2

· · ·

X mod Prime(Ln) = n

1, 2, · · · , and n are the levels (i.e., orders) of the nodes that correspond toL1, L2, · · · , and Ln,

respectively. SincePrime(L1), P rime(L2), · · · , and Prime(Ln) are prime numbers, they are

pairwise relatively prime numbers. Thus, by Theorem 2, there existsX with 0 ≤ X < Prime(L1)×

November 20, 2009 DRAFT

15

Prime(L2)×· · ·×Prime(Ln) which solves the system of the above simultaneous congruences.

We call X Order Encoding Number. Given Order Encoding Number, we can know the order

information for any locationLi in the path by computingX mod Prime(Li). Sometimes,

Prime(Li) may be less thani. To prevent it, a prime number that is greater than the maximum

path length is assigned to a location.

Our use of prime numbers is similar to that in [39]. However, [39] assigns different prime

numbers to each element in an XML tree that can have millions of elements while our approach

assigns different prime numbers to different locations in a tree for trace records that has, at most,

a few hundred locations. Therefore, in a typical application, [39] generates extremely large prime

numbers. Furthermore, [39] orders all the elements of an XML tree, while we order only the

locations on a path whose length is much smaller than the tree for trace records.

Therefore, we can encode the path by using Element List Encoding Number and Order

Encoding Number. Although a path condition has multiple ancestor-descendant relationships,

we can find out whether a path satisfies the path condition in Figure 2 by checking some simple

mathematical conditions. We will explain how we process tracking queries and path oriented

queries efficiently by using Element List Encoding Number and Order Encoding Number in

Section VII.

Example 2:Assume that in Figure 6, the prime numbers that correspond toA,B, C,D, and E

are 2, 3, 5, 7, and 11. Consider the pathA− > B− > C. Element List Encoding Number for

the path is2 × 3 × 5 = 30. To compute Order Encoding Number, we must computeX such

that X mod 2 = 1, X mod 3 = 2, and X mod 5 = 3. By Theorem 2, there existsX with

0 ≤ X < 30. In this case,X = 23. Similarly, we encode the other four paths, and get Element

List Encoding Numbers and Order Encoding Numbers for the paths.

Consider a path with cycles. In such a case, we cannot compute Order Encoding Number since

the same prime numbers should return different orders. However, we can solve the problem with

a simple renaming method that adds the sequence order to the location. For example, consider

the pathA− > B− > C− > A− > B− > D− > A. In the path, the location A appears in the

first, fourth, and seventh positions. We can rename A in the first, fourth, and seventh positions

to A1, A2, and A3, respectively, by the sequence order of A. In the same way, we can rename

the path toA1− > B1− > C1− > A2− > B2− > D1− > A3. Then, since the nodes with the

same location name are considered differently, we can compute Order Encoding Number. In data

November 20, 2009 DRAFT

16

sets that have cycles, a user can write a query with a sequence order such as//A1//B1//A3.

If a user does not specify the sequence order, we translate the location name with the default

sequence order (=1). For example,//A//D is translated into//A1//D1.

Even though we can store the flow information for products effectively by using the path

encoding scheme, we did not discuss the time information for products yet. To store the time

information for products, we construct the time tree from trace records in which the node has

the start time and end time as well as the location.

In the time tree, we say that two paths are the same if the flows for locations are the same

as well as the time information (start time and end time) for locations is the same.

Figure 7 shows the time tree constructed from the trace records in Figure 5. The construction

of the time tree is the same as that of the tree for the trace records except that the stay records

with the same location become different nodes if their time information is different. See B[5,7]

node and B[7,8] node in Figure 7. Although these two nodes have the same location, they are

classified as different nodes since they have different time information.

To retrieve the time information efficiently, we store numbers with nodes in the time tree by

using the region numbering scheme [40] which assigns a node two values, Start and End. Start

and End are assigned consecutively during the depth-first search. The region numbering has the

property that node A is the ancestor of node B if and only if A.Start<B.Start and B.End<A.End.

In order to know the region numbers of the nodes associated with a tag, we attach the tag to the

node that corresponds to the final location of the trace record of the tag. Thus, the region number

that corresponds to the final node in the trace record of the tag is assigned to the tag. In order

to get the time and location information for tag 6 in Figure 7, we see the region number that

corresponds to the final node in the trace record of tag 6. For the final node C[7,8] for tag 6, its

region number is [13,14]. Therefore, we retrieve nodes that satisfy Start≤13 and End≥14. Such

nodes are A[2,3], E[4,6], and C[7,8]. Therefore, we can retrieve the time information for tag 6

efficiently. There are more sophisticated region numbering schemes, however, the incorporation

of them is straightforward.

VI. STORING TRACE RECORDS IN ANRDBMS

We devise a relational schema to store RFID data based on the path encoding scheme and

the region numbering scheme. The schema is shown in Figure 8. PATHTABLE, TAG TABLE,

November 20, 2009 DRAFT

17

A[2,3]

B[5,7]

C[8,9] D[13,16]

B[7,8]

D[14,18]

E[4,6]

C[7,8]

D[4,5] D[5,6]

(1,20)

(2,7)

(3,4) (5,6)

(8,11)

(9,10) (13,14)

(12,15) (16,17) (18,19)

Fig. 7. Time Tree Structure for the Trace Records

and TIME TABLE are related to the trace records and INFOTABLE is related to the product

information (e.g., product name, manufacturer, price).

PATH_ID ELEMENT_ENC_1 … ELEMENT_ENC_m ORDER_ENC_1 … ORDER_ENC_m

TAG_ID PATH_ID START END INFO_ID START END LOC START_TIME END_TIME

INFO_ID PRODUCT_NAME MANUFACTURER PRICE

PATH_TABLE

TAG_TABLE TIME_TABLE

INFO_TABLE

Fig. 8. Relational Schema to Store RFID Data

PATH TABLE stores the path information by using the path encoding scheme in Section V. In

PATH TABLE, the attributes ELEMENTENC 1, ELEMENT ENC 2, · · · , and ELEMENTENC m

correspond to Element List Encoding Number , while the attributes ORDERENC 1, ORDERENC 2,

· · · , and ORDERENC m correspond to Order Encoding Number. If an RDBMS supports the

data type whose maximum value is greater than Element List Encoding Number and Order

Encoding Number of any trace record, PATHTABLE consists of only ELEMENTENC 1 and

ORDERENC 1 with PATH ID.

TIME TABLE stores the time information for trace records by using the region numbering

scheme. In TIMETABLE, START and END are Start and End in the region numbering scheme.

LOC is the location. STARTTIME and ENDTIME correspond to the start time and end time

in the time tree. TAGTABLE has two identifiers for path and time information. PATHID is the

identifier for the path information and (START, END) is the identifier for the time information.

In addition, INFOID is the identifier for INFOTABLE. INFO TABLE stores the information

of products. In this paper, we do not focus on INFOTABLE.

November 20, 2009 DRAFT

18

If a path is long, its Element List Encoding Number and Order Encoding Number will be

large and commercial RDBMSs may not support the storing of such large numbers. To solve

this problem, we store the path in several attributes by dividing it.

The notations used in this paper are defined as follows:

• Type: the data type for Element List Encoding Number and Order Encoding Number which

an RDBMS supports. (e.g., BIGINT, DECIMAL)

• MaxType: the maximum value that the data typeType can have

• m: the maximum number of path segments in a path

Consider the long pathL1− > L2− > · · · − > Ln. We can divide the long path into several

path segmentss1, · · · , st such that

• s1 = L1− > L2− > · · · − > Li1 ,

s2 = Li1+1− > Li1+2− > · · · − > Li2 ,

· · · ,

st = Lit−1+1− > Lit−1+2− > · · · − > Lit

(1 ≤ i1 < i2 < · · · < it = n)

• For u ∈ 1, 2, · · · , t,

Πj=iu
j=iu−1+1Prime(Lj) ≤ MaxType, and(Πj=iu

j=iu−1+1Prime(Lj))×Prime(Liu+1) > MaxType,

with i0 = 0 andPrime(Ln+1) = ∞.

We can easily find the path segments for the long pathL1− > L2− > · · · − > Ln which

satisfy the above conditions. We do not consider Order Encoding Number when we divide the

path since Order Encoding NumberX for any path is less than Element Encoding NumberE

for the path by Theorem 2 (i.e.,0 ≤ X < E). However, elements in each path segment keep

the order information in the original path. Example 3 shows how the path is split up.

Example 3:Assume that the pathA− > B− > C− > D− > E− > F , p1 = Prime(A) = 2,

p2 = Prime(B) = 3, p3 = Prime(C) = 5, p4 = Prime(D) = 7, p5 = Prime(E) = 11,

p6 = Prime(F) = 13 andMaxType = 250. SinceΣj=6
j=1pj = 30030 > MaxType = 250, Element

List Encoding Number for the path cannot be stored in one attribute withType. We split up the

path into path segmentss1 : A− > B− > C− > D, s2 : E− > F which satisfy the following

inequalities. Note that the order ofE in s2 is not 1 but 5, and that of F is not 2 but 6.

Σj=4
j=1pj = 210 < MaxType and (Σj=4

j=1pj)× p5 = 2310 > MaxType

November 20, 2009 DRAFT

19

Σj=6
j=5pj = 143 < MaxType and (Σj=6

j=5pj)× p7 = ∞ > MaxType

If the maximum number of path segments in a path ism, then PATHTABLE is created, as

shown in Figure 8, which hasm ELEMENT ENC attributes andm ORDERENC attributes. If

some path is divided intot path segments andt is less thanm, we fill ELEMENT ENC (t+1),

ELEMENT ENC (t+2), · · · , and ELEMENTENC m with 1 and ORDERENC (t+1), ORDERENC (t+2),

· · · and ORDERENC m with 0.

Function store_trace_record(trace records tr)
begin
1: // m: the maximum number of path segments in a path
2: m := 0

3: for i=0; i<the number of trace records; i++
4: {
5: <path_id, store_flag>:=constructTree(tree, tr[i])
6: if store_flag == FALSE
7: {
8: <segment_list, segment_num> := divide_path(tr[i])
9: if segment_num > m
10: m := segment_num
11: store segment_list for trace record tr[i] in PATH_FILE

using the path encoding scheme
12: }
13: store (tag identifier from tr[i], path_id) in TEMP_PATH_FILE
14: }

15: for i=0; i<the number of trace records; i++
16: constructTimeTree(time_tree, tr[i])
17: assign region numbers to nodes in time_tree

18: while traversing nodes in time_tree by the breath-first search
19: {
20: store nodes of time_tree in TIME_FILE
21: store (tag identifier, region numbers for node) in

TEMP_TIME_FILE for all tags attached to node
22: }

23: create the schema according to m
24: perform bulk loading with PATH_FILE, TEMP_PATH_FILE,

TIME_FILE, and TEMP_TIME_FILE
25: after joining TEMP_PATH_TABLE and TEMP_TIME_TABLE

on TAG_ID, fill TAG_TABLE
end

Fig. 9. Algorithm to Store Trace Records using the Relational Schema

Figure 9 shows the algorithm to store trace records using the relational schema. As input

for the algorithm, trace records are given. Trace records are translated into relational data. In

the algorithm of Figure 9, we pile up the relational data in a text file format and then store

it into an RDBMS together with bulk loading in order to load data efficiently. PATHFILE

is the file for PATHTABLE, TEMP PATH FILE for TEMP PATH TABLE, TIME FILE for

TIME TABLE, and TEMPTIME FILE for TEMP TIME TABLE. In Line 2, we initializem,

the maximum number of path segments in a path. To fill PATHTABLE, we construct a tree

November 20, 2009 DRAFT

20

from the paths of the trace recordstr by usingconstructTree(Tree tree, TraceRecord tr)(Line

5). In constructTree(Tree tree, TraceRecord tr), if there is no path fortr in tree, it inserts a new

path intotree, returnspath id of the new path and setsstoreflag to FALSE. Otherwise, it returns

path id of the path and setsstoreflag to TRUE.

If storeflag is FALSE, we insert Element List Encoding Number and Order Encoding Number

for the path into PATHFILE (Line 6-12). However, if the numbers are large and cannot be stored

in one attribute, we divide the path usingdivide path(TraceRecord tr). divide path(TraceRecord

tr) divides one path into several path segments according toMaxType and returns a path segment

list (i.e.,segmentlist) and the number of path segments in the path (i.e.,segmentnum). Each path

segment is stored in PATHFILE by using the path encoding scheme withpath id. Also, for the

creation of the schema, we keep the maximum number of path segments,m (Line 9-10). In Line

13, we inserttag identifierandpath id into TEMP PATH FILE. Note that TEMPPATH TABLE

is used to fill TAGTABLE later.

To fill TIME TABLE, we construct the time tree from the trace recordstr by using con-

structTimeTree(TimeTree timetree, TraceRecord tr)(Line 16). In constructTimeTree(TimeTree

time tree, TraceRecord tr), if there is no tr in time tree, it inserts the new trace record into

time tree. After the construction oftime tree, we assign region numbers to the nodes intime tree

(Line 17). Then, we store (START, END, LOC, STARTTIME, END TIME) in TIME FILE (Line

20) by traversing nodes intime tree by using the breath-first search. If there are tags attached to

a node, we store (tag identifier, region number for the node) in TEMPTIME FILE (Line 21). We

create the schema according to the maximum number of path segmentsm. We then perform bulk

loading with PATHFILE, TEMP PATH FILE, TIME FILE, and TEMPTIME FILE. Finally, to

fill TAG TABLE, we join TEMP PATH TABLE and TEMPTIME TABLE on TAG ID (Line

25).

Figure 10 shows the status of tables after storing trace records in Figure 5 by the algorithm

in Figure 9. In Figure 10, we assume that all Element List Encoding Numbers can be stored in

one attribute sinceMaxType is large enough. Since there are 5 different paths for trace records

in Figure 5, Element List Encoding Numbers and Order Encoding Numbers of 5 paths are

stored in PATHTABLE. Note that the path identifiers forA− > B− > C, A− > B− > D,

A− > E− > C, A− > E, and A− > D are 1, 2, 3, 4, and 5, respectively. As shown in

Figure 7, the time tree for trace records has 10 nodes. The information for 10 nodes is stored

November 20, 2009 DRAFT

21

in TIME TABLE. Also, the path identifier and the time identifier for 10 tags are stored in

TAG TABLE.

PATH_ID ELEMENT_
ENC

ORDER_
ENC

1 30 23

2 42 17

3 110 13

4 22 13

5 14 9

TAG_I
D

PATH_
ID

START END INFO_
ID

tag1 1 3 4

tag2 1 3 4

tag3 1 3 4

tag4 2 5 6

tag5 2 9 10

tag6 3 13 14

tag7 3 13 14

tag8 4 12 15

tag9 5 16 17

tag10 5 18 19

PATH_TABLE TAG_TABLE
START END LOC START_

TIME
END_
TIME

1 20 A 2 3

2 7 B 5 7

8 11 B 7 8

12 15 E 4 6

16 17 D 4 5

18 19 D 5 6

3 4 C 8 9

5 6 D 13 16

9 10 D 14 18

13 14 C 7 8

TIME_TABLE

Fig. 10. Status of Tables after Storing Trace Records whenm is 1

PATH_ID ELEMENT_ENC_1 ELEMENT_ENC_2 ORDER_ENC_1 ORDER_ENC_2

1 30 1 23 0
2 6 7 5 3
3 22 5 13 3
4 22 1 13 0
5 14 1 9 0

PATH_TABLE

Fig. 11. Status of Tables after Storing Trace Records whenm is 2

If we cannot store Element List Encoding Number in one attribute, we should split up the paths

as mentioned above. Figure 11 shows the status of PATHTABLE after storing trace records in

Figure 5 whenMaxType is 30. In this case,m is 2. Also, since TAGTABLE and TIME TABLE

are not affected bym, they are the same as those in Figure 10. Thus, we do not show them in

Figure 11. In Figure 11, the pathA− > B− > D (path id 2) and the pathA− > E− > C

(path id 3) are divided into two path segments. Therefore, those paths are stored with two

ELEMENT ENC attributes and two ORDERENC attributes. For example,A− > B− > D has

two path segments,A− > B and D. A− > B is encoded as ELEMENTENC 1 = 2 × 3 and

ORDERENC 1 = 5 andD as ELEMENTENC 2 = 7 and ORDERENC 2 = 3. Other paths are

stored with one ELEMENTENC attribute and one ORDERENC attribute and their remaining

attributes are filled with 1 or 0.

November 20, 2009 DRAFT

22

VII. QUERY TRANSLATION

Based on the relational schema in Section VI, we provide a method to process tracking queries

and path oriented queries. Since we store RFID data by using an RDBMS, we translate tracking

queries and path oriented queries into SQL queries. Then, we can easily process the queries by

executing the SQL queries. We will first deal with the translation whenm is 1 in Section VII-A

and then deal with the translation whenm is greater than 1 in Section VII-B.

A. Basic Query Translation

In this section, we assume that all Element List Encoding Numbers can be stored in one

attribute. That is,m is 1 and PATHTABLE consists of 3 attributes: pathid, ELEMENT ENC 1

and ORDERENC 1. Therefore, for convenience, we use ELEMENTENC and ORDERENC

instead of ELEMENTENC 1 and ORDERENC 1, respectively.

1) Tracking Query:We can process a tracking query efficiently by using the relational schema

in Section VI. To trace a tag, we get Element List Encoding Number and Order Encoding Number

that correspond to the tag. To get them, we join PATHTABLE and TAG TABLE. Figure 12

shows the SQL query to get Element List Encoding Number and Order Encoding Number that

correspond to the tag with TagID =my tag id.

SELECT P.ELEMENT_ENC, P.ORDER_ENC
FROM PATH_TABLE P, TAG_TABLE T
WHERE T.TAG_ID = my_tag_id AND T.PATH_ID = P.PATH_ID

Fig. 12. SQL Query for the Tracking Query

In order to know the locations in the flow of the tag, we factorize Element List Encoding

Number. We then order the prime number factorsP1, · · · , Pn by computingOrder Encoding

Number modPi. We finally transform the prime number into the location name that corresponds

to it.

Though the SQL query in Figure 12 has the join between PATHTABLE and TAG TABLE,

it does not have too much time to execute the query since the query has the selection predicate

for TAG TABLE (T.TAG ID = my tag id) and there is only one tuple that satisfies the predicate.

Therefore, we can process tracking queries efficiently.

November 20, 2009 DRAFT

23

2) Path Oriented Retrieval Query:Although the path condition in a path oriented retrieval

query has many ancestor-descendant relationships, we can easily find paths that satisfy the path

condition by checking mathematical conditions. Therefore, we can process path oriented retrieval

queries efficiently with our relational schema.

By Theorem 1, the path contains locationsL1, L2, · · · , Lk if and only if ELEMENTENC mod

(Prime(L1) × Prime(L2) × · · · × Prime(Lk)) = 0. Therefore, if the path condition contains

locationsL1, L2, · · · , Lk, we insert the element membership conditionELEMENTENC mod

(Prime(L1) × Prime(L2) × · · · × Prime(Lk)) = 0 into the where clause in the SQL query.

To determine the ancestor-descendant relationship or the parent-child relationship, we use Order

Encoding Number. Consider two adjacent steps in the path condition and let locations of the

two steps beLa andLb. If La andLb are in the ancestor-descendant relationship (i.e.,La//Lb),

we insertELEMENTENC modPrime(La) < ELEMENTENC modPrime(Lb) into the where

clause in the SQL query. IfLa andLb are in the parent-child relationship (i.e.,La/Lb), we insert

ELEMENTENC modPrime(La) + 1=ELEMENT ENC modPrime(Lb) into the where clause.

After finding the paths that satisfy the path condition, we join PATHTABLE and TAG TABLE

on TAG ID to get tags. Figure 13 shows the SQL query that corresponds to the path oriented

retrieval query<//A//B/C>. In Figures 13 through 18,pA and pB and pC denotePrime(A),

Prime(B), andPrime(C), respectively.

SELECT T.TAG_ID
FROM PATH_TABLE P, TAG_TABLE T
WHERE MOD(P. ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)
AND P.PATH_ID = T.PATH_ID

Fig. 13. SQL Query for<//A//B/C>

Path oriented retrieval queries may have time conditions. If the queries have time conditions,

we join TAG TABLE and TIME TABLE. We can retrieve the time information efficiently by

using the property of the region numbering scheme. We insert the following statement into the

where clause in the SQL query for time conditions.

TIME TABLE.LOC=’location name’ AND TIMETABLE.START≤TAG TABLE.START AND

TAG TABLE.END≤TIME TABLE.END AND Time Conditions in the Step

November 20, 2009 DRAFT

24

Figure 14 shows the SQL query that corresponds to the path oriented retrieval query<//A//B[(EndTime-

StartTime)<10]/C>.

SELECT T.TAG_ID
FROM PATH_TABLE P, TAG_TABLE T , TIME_TABLE S
WHERE MOD(P. ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)
AND P.PATH_ID = T.PATH_ID AND S.LOC = ‘B’ AND
S.START <= T.START AND T.END <= S.END AND
(S.END_TIME – S.START_TIME) < 10

Fig. 14. SQL Query for<//A//B[(EndTime-StartTime)<10]/C>

Path oriented retrieval queries may also have product information conditions, such as PRODUCTNAME

= ’laptop’. To process such queries, we first perform the selection of INFOTABLE for product

information conditions. We then join INFOTABLE and TAG TABLE on INFO ID. Figure

15 shows the SQL query that corresponds to the path oriented retrieval query<//A//B/C,

PRODUCTNAME = ’laptop’>

SELECT T.TAG_ID
FROM PATH_TABLE P, TAG_TABLE T, INFO_TABLE I
WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)
AND P.PATH_ID = T.PATH_ID AND
I.PRODUCT_NAME = ‘ laptop’ AND I.INFO_ID = T.INFO_ID

Fig. 15. SQL Query for<//A//B/C, PRODUCTNAME = ’laptop’>

3) Path Oriented Aggregate Query:Since path oriented aggregate queries have aggregate

functions, we add an aggregate function in the select clause of the SQL query. Figure 16 shows

the SQL query that corresponds to the path oriented aggregate query<COUNT(), //A//B/C>.

SELECT COUNT(*)
FROM PATH_TABLE P, TAG_TABLE T
WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)
AND P.PATH_ID = T.PATH_ID

Fig. 16. SQL Query for<COUNT(), //A//B/C>

November 20, 2009 DRAFT

25

In the case of aggregate functions that need time attributes as arguments, we join TAGTABLE

and TIME TABLE to get the time attributes since PATHTABLE does not have the time infor-

mation. Figure 17 shows the SQL query that corresponds to the path oriented aggregate query

<AVG(B.StartTime),//A//B/C>.

SELECT AVG(S.START_TIME)
FROM PATH_TABLE P, TAG_TABLE T , TIME_TABLE S
WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC)
AND P.PATH_ID = T.PATH_ID AND S.LOC = ‘B’ AND
S.START <= T.START AND T.END <= S.END

Fig. 17. SQL Query for<AVG(B.StartTime), //A//B/C>

Consider the query<AVG(C.EndTime-A.StartTime),//A//B/C>. The query has the aggregate

function that has two time attributes as the argument. In this case, we join one TAGTABLE

and two TIMETABLEs. Figure 18 shows the SQL query that corresponds to the path oriented

aggregate query<AVG(C.EndTime-A.StartTime), //A//B/C>.

SELECT AVG(S2.END_TIME-S1.START_TIME)
FROM PATH_TABLE P, TAG_TABLE T, TIME_TABLE S1, TIME_TABLE S2
WHERE MOD(P.ELEMENT_ENC, pA*pB*pC) = 0 AND
MOD(P.ORDER_ENC, pA) < MOD(P.ORDER_ENC, pB) AND
MOD(P.ORDER_ENC, pB) + 1 = MOD(P.ORDER_ENC, pC) AND
P.PATH_ID = T.PATH_ID AND S1.LOC = ‘A’ AND
S1.START <= T.START AND T.END <= S1.END AND S2.LOC = ‘C’ AND
S2.START <= T.START AND T.END <= S2.END

Fig. 18. SQL Query for<AVG(C.EndTime - A.StartTime), //A//B/C>

B. Advanced Query Translation

In this section, we assume that Element List Encoding Number cannot be stored in one

attribute. Although we can store Element List Encoding Number for a long path in an RDBMS

by dividing the path, it is difficult to find the paths that satisfy the path condition using the SQL

query due to the computation overflow. For example, to find some path from PATHTABLE

in Figure 11, we should multiply ELEMENTENC 1 by ELEMENT ENC 2. However, since

MaxType is 30, the overflow will occur in an RDBMS during the multiplication. The SQL query

may not run or the result may be wrong. Therefore, we need to extend the translation for path

conditions whenm is greater than 1.

November 20, 2009 DRAFT

26

When a path condition contains locationsL1, L2, · · · , Lk, we should insert the element mem-

bership condition(ELEMENTENC 1 × ELEMENTENC 2 × · · · × ELEMENTENC m) mod

(Prime(L1) × Prime(L2) × · · · × Prime(Lk)) = 0 into the where clause in the SQL query

in order to check whether the path contains locationsL1, L2, · · · , Lk. To avoid the computation

overflow during the execution of the condition, we change the condition into another equivalent

condition by using Lemma 1 and 2.

Lemma 1:Let E1, E2, andP be any natural numbers. Then,

(E1E2) mod P = (E1 mod P)(E2 mod P) mod P

Proof: This is easily derived from the basic number theory.

Lemma 2:Let E, P1, and P2 be any natural numbers andP1 and P2 be relatively prime

numbers. Then,

E mod (P1P2) = 0 if and only if E mod P1 = 0 andE mod P2 = 0

Proof: This is easily derived from the basic number theory.

Suppose that the path condition in the query containsL1, L2, · · · , Lk. Let pi be Prime(Li),

P be p1p2 · · · pk and Ei be ELEMENTENC i. To know whether the path contains locations

L1, L2, · · · , Lk, we should check the condition(E1E2 · · ·Em) mod P = 0. To avoid the overflow

during the computation of the condition, we change it into another equivalent condition using

Lemma 1, which can be computed without an overflow. Consider the simple case thatm is 2.

By Lemma 1,(E1E2) mod P is equal to(E1 mod P)(E2 mod P) mod P . Therefore, we check

(E1 mod P)(E2 mod P) mod P = 0 instead of(E1E2) mod P = 0. If P 2 ≤ MaxType, the

computation of(E1 mod P)(E2 mod P) mod P = 0 is performed without an overflow since

A mod P < P , for any natural numberA.

If m is greater than 2, we apply Lemma 1 recursively. The detailed algorithm is shown in Figure

19. However, the translation using Lemma 1 is limited sinceP 2 ≤ MaxType should be satisfied. If

P 2 ≤ MaxType is not satisfied, we can apply Lemma 2 before using Lemma 1. To apply Lemma

2, we first factorizeP into P1, P2, · · · , Pt such thatP = P1P2 · · ·Pt and P 2
i ≤ MaxType for

i = 1, 2, · · · , t. If P is factorized intoP1 andP2, we can change the condition(E1E2) mod P =

0 into two conditions(E1E2) mod P1 = 0 and (E1E2) mod P2 = 0 by using Lemma 2.

Also, by using Lemma 1, we can change(E1E2) mod P1 = 0 and (E1E2) mod P2 = 0 into

(E1 mod P1)(E2 mod P1) mod P1 = 0 and(E1 mod P2)(E2 mod P2) mod P2 = 0. An RDBMS

November 20, 2009 DRAFT

27

Function element_translation(element list L1, L2, …, Lk in the path condition)
begin
1: product := 1
2: condition:= null

3: for i:=1; i<=k; i++
4: {
5: if (product * Prime(L i))2 > MaxType

6: {
7: if condition == null
8: // m: the maximum number of path segments in a path
9: condition := sub_element_translation(product, m) + “ = 0 ”
10: else
11: {
12: // m: the maximum number of path segments in a path
13: condition := condition + “ and ” + sub_element_transation(product, m) + “ = 0 ”
14: }
15: product := 1
16: }
17: product := product * Prime(Li)
18: }
19: if condition == null
20: condition := sub_element_translation(product, m) + “ = 0 ”
21: else
22: {
23: condition := condition + “ and ” + sub_element_translation(product, m) + “ = 0 ”
24: }

25: return condition
end

Function sub_element_transation(product p, index i)
begin
1: if i==1
2: return “ELEMENT_ENC_” + i + “ mod ” + p
3: else
4: return “ (”+sub_element_translation(p, i-1) + ”)(ELEMENT_ENC_” + i +

“ mod ” + p + “) mod ” + p
end

Fig. 19. Algorithm to Translate the Element Membership Condition into an SQL Query

can evaluate(E1 mod P1)(E2 mod P1) mod P1 = 0 and(E1 mod P2)(E2 mod P2) mod P2 = 0

without a computation overflow.

The algorithm in Figure 19 summarizes the above process for checking whether the path

contains locationsL1, L2, · · · , Lk. As input for the algorithmelementtranslation(), the element

list L1, L2, · · · , Lk in the path condition is given. In Line 1-2,product and condition are

initialized. If the square of the product of prime numbers for the elements in the path is

greater thanMaxType, we call subelementtranslation(product, m)and reinitializeproduct.

subelementtranslation(product, m)translates(E1E2E3 · · ·Em) mod P into the equivalent con-

dition, which does not cause the computation overflow.

To determine the ancestor-descendant relationship or the parent-child relationship, we use

Order Encoding Number. Whenm is 1, we computeORDERENC 1 modpj for the order of

locationLj. However, whenm is greater than 1, the order information of each location in a path

November 20, 2009 DRAFT

28

SELECT T.TAG_ID
FROM PATH_TABLE P, TAG_TABLE T
WHERE
MOD(MOD(P.ELEMENT_ENC_1, pA*pB*pC) *

MOD(P.ELEMENT_ENC_2, pA*pB*pC), pA*pB*pC) = 0 AND

MOD(P.ORDER_ENC_1, pA) * FLOOR(1 – (P.ELEMENT_ENC_1 mod pA)/ pA) +
MOD(P.ORDER_ENC_2, pA) * FLOOR(1 – (P.ELEMENT_ENC_2 mod pA)/ pA)
< MOD(P.ORDER_ENC_1, pB) * FLOOR(1 – (P.ELEMENT_ENC_1 mod pB)/ pB) +
MOD(P.ORDER_ENC_2, pB) * FLOOR(1 – (P.ELEMENT_ENC_2 mod pB)/ pB) AND

MOD(P.ORDER_ENC_1, pB) * FLOOR(1 – (P.ELEMENT_ENC_1 mod pB)/ pB) +
MOD(P.ORDER_ENC_2, pB) * FLOOR(1 – (P.ELEMENT_ENC_2 mod pB)/ pB) + 1 =
MOD(P.ORDER_ENC_1, pC) * FLOOR(1 – (P.ELEMENT_ENC_1 mod pC)/ pC) +
MOD(P.ORDER_ENC_2, pC) * FLOOR(1 – (P.ELEMENT_ENC_2 mod pC)/ pC)

Fig. 20. SQL Query for<//A//B/C> whenm is 2

is separately stored in attributes ORDERENC 1, ORDERENC 2, · · · , and ORDERENC m.

We use Theorem 3 to compute the order whenm is greater than 1.

Theorem 3:Let O be Order Encoding Number in an original path before dividing the path

and Oi be ORDERENC i that corresponds to thei path segment after dividing the path. For

each locationLj in the path, the following equation is satisfied.

O mod pj = Σm
i=1(Oi mod pj)x1− Ei mod pj

pj

y

Proof: If Lj is contained in thei path segment,(Oi mod pj)x1−Ei mod pj

pj
y = (Oi mod pj) =

(O mod pj) sinceEi mod pj = 0. Otherwise,(Oi mod pj)x1−Ei mod pj

pj
y = 0 sinceEi mod pj 6=

0 andEi mod pj < pj. Therefore,Σm
j=1(Oi mod pj)x1− Ei mod pj

pj
y computes the order informa-

tion of locationLj in m ORDERENC attributes. That is,O mod pj = Σm
i=1(Oi mod pj)x1 −

Ei mod pj

pj
y

If we useΣm
i=1(Oi mod pj)x1− Ei mod pj

pj
y in Theorem 3, we can translate the order condition

into an SQL query. We use theFLOORoperator in SQL queries forxy.

Figure 20 shows the SQL query that corresponds to the path oriented retrieval query<//A//B/C>

when m is 2. We omit other translation examples since the translation, except for the path

information, is similar to that of Section VII-A.

VIII. E XPERIMENTS

In order to validate our approach, we conduct experimental evaluations for various queries.

November 20, 2009 DRAFT

29

A. Experimental Environment

We experiment on a Pentium 2.53GHz with 1GB main memory using Java. Since there is no

well known RFID data set, we generate synthetic data based on a real-life example and formulate

15 queries (1 tracking query, 4 path oriented retrieval queries, 10 path oriented aggregate queries).

The query performance is measured by processing the queries 3 times and averaging the execution

time. As a comparison system, RFID-Cuboid [14] is used. For fairness, we implement RFID-

Cuboid on an RDBMS to support tracking queries and path oriented queries.

1) Data Set:Since we use stay records instead of raw RFID data, we generate stay records.

To reflect real environments, we generate data sets based on a real-life example in Figure 21.

Figure 21 shows the food distribution [9] in the United States. In the food distribution, the

minimum length of paths is 3 and the maximum length is 9. The products are distributed from

import markets and agricultural input suppliers. Since it is difficult to find detailed distribution

information of each product from a real-life example, we assume that the products are distributed

equally when they move to the next location if there are many next locations.

Specialty
retailers

Institutional
wholesalers

Import
markets

Export
markets

Government
purchases

Specialty
wholesalers

Food-service
retailers

Integrated Food-service
Wholesalers/distributors

Retail
stores

Retail
processors

Terminal
assemblers

Local
Assemblers

Agricultural
producers

Agricultural input
suppliers

Manufactures

Integrated
wholesalers

Consumers

A

B

C

D

E F

G

I
J

H

K

ML

N O P

Q

Fig. 21. Food Distribution in the United States [9]

Initially, products are generated at starting nodes such as import markets and agricultural input

November 20, 2009 DRAFT

30

suppliers. Then, they move to the next location in groups according to the links of Figure 21.

As products move together in groups in many RFID applications, we generate stay records with

the grouping factor, which is the number of data generated at a starting node simultaneously.

We consider two kinds of data in data generation: GData (grouping factor: 10000) and IData

(grouping factor: 1000). Although we set the grouping factor of GData to 10000 and that of IData

to 1000, the values (i.e., 10000, 1000) are not important. The key point in generating GData and

IData is that products in GData move in larger groups compared to those in IData. By generating

GData and IData, we analyze how the query performance is affected by the grouping factor. We

set the number of instances for each location to 2 since we consider all possible paths and the

number of paths increases exponentially.

6× 106, 12× 106, 18× 106, 24× 106, and30× 106 stay records are generated for both GData

and IData. The DECIMAL type in an RDBMS is used to store Element List Encoding Number

and Order Encoding Number.

2) Query Set:15 queries are formulated to test various features. Query 1 is a tracking query,

Query 2-5 are path oriented retrieval queries, and Query 6-15 are path oriented aggregate queries.

The queries are shown in Figure 22. Note that we represent the location name in queries as the

character in the circle in Figure 21 and the instance identifier since the real names are long. Query

1 tests the performance of the tracking query. Query 2, 6, 12, and 15 evaluate the performance of

the path condition with a single location while other queries with multiple locations. In particular,

Query 5 and 9 have the time condition.

Query

Number

Query Query

Number

Query

Query 1 TagID = 1 Query 9 <COUNT(), //D0//F0[StartTime<2000]//I0//O0>
Query 2 <//D0> Query 10 <AVG(D0.EndTime-D0.StartTime), //D0/F0//I0/O0>
Query 3 </A0/B0/C0/D0/F0> Query 11 <AVG(D0.EndTime-D0.StartTime), //D0//F0//I0//O0>
Query 4 <//D0//F0//I0//O0> Query 12 <AVG(D0.StartTime), //D0>
Query 5 <//D0//F0[StartTime<2000]//I0//O0> Query 13 <MIN(D0.EndTime-D0.StartTime), //D0/F0//I0/O0>
Query 6 <COUNT(), //D0> Query 14 <MIN(D0.EndTime-D0.StartTime), //D0//F0//I0//O0>
Query 7 <COUNT(), //D0/F0//I0/O0> Query 15 <MIN(D0.StartTime), //D0>
Query 8 <COUNT(), //D0//F0//I0//O0>

Fig. 22. Query Set

November 20, 2009 DRAFT

31

B. Experimental Results

In experimental results, if the query is not finished within 2 hours, we denote it by ”X” in

the graph.

Figure 23 shows the query performance in IData with3× 107 as m, the maximum number of

path segments in a path, changes. Figure 23-(a) shows the query performance when the execution

time is less than 3 seconds and Figure 23-(b) shows the performance when the time is more than

3 seconds. As m increases, the computation overhead becomes generally large since we need

the additional computation for segmented paths. However, as can be seen in Figure 23-(b), the

performance sometimes is not affected much by m. This is partly because the RDBMS does not

properly optimize the translated SQL query as the query is quite complex. While a lower value

of m is favorable for query performance, a higher value must be used to avoid the overflow

of the DECIMAL type. This is especially necessary for RDBMSs that do not provide a large

DECIMAL type. Therefore, we set m to 2 for the following experiments.

(a) When the execution time is less than 3 seconds (b) When the execution time is more than 3 seconds

0

0.5

1

1.5

2

2.5

3

Q1 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q11 Q13 Q14

ex
ec

ut
io

n
ti

m
e

(s
ec

)

Query Number

m=3 m=2 m=1

0

50

100

150

200

250

300

350

400

Q2 Q6 Q12 Q15

ex
ec

ut
io

n
ti

m
e

(s
ec

)

Query Number

m=3 m=2 m=1

Fig. 23. Experiment with respect to m

Figure 24 shows the query performance for 15 queries. Figure 24-(a) is the performance in

GData with3 × 107 tuples and Figure 24-(b) is the performance in IData with3 × 107 tuples.

Path denotes our approach and Cuboid RFID-Cuboid in the figures of this section. Since the

performance gap between our approach and RFID-Cuboid is wide, we use the logarithmic scale

(base 10) for the execution time in Figure 24.

In GData and IData, our approach is better than RFID-Cuboid for most queries in terms of

the execution time (except Query 6, 12 and 15). We can also observe that the performance gap

between our approach and RFID-Cuboid in IData is larger than that in GData. Since the shapes

November 20, 2009 DRAFT

32

of the graphs for the execution time for different sizes are similar, the execution time for only

GData with3× 107 and IData with3× 107 is shown in Figure 24.

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15

ex
ec

ut
io

n
ti

m
e

(l
og

 s
ca

le
)

Query Number

Cuboid-GData Path-GData

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15

ex
ec

ut
io

n
ti

m
e

(l
og

 s
ca

le
)

Query Number

Cuboid-IData Path-IData

(a) GData (b) IData

* In Cuboid-GData, the execution time for Query 15 is 0 in terms of
microseconds. Therefore, we cannot represent it with the logarithmic scale.

X X X X

Fig. 24. Execution Time for 15 Queries

Figure 25, 26, and 27 show the query performance according to the number of stay records.

Figure 25-(a) shows the performance for a tracking query. For the tracking query, our approach is

faster than RFID-Cuboid in both GData and IData. We can also observe that our approach is much

faster than RFID-Cuboid in IData. While our approach finds only Element List Encoding Number

and Order Encoding Number for the given tag identifier, RFID-Cuboid scans STAYTABLE (the

table for stay records). Therefore, in IData, RFID-Cuboid has much worse performance than our

approach compared to GData since the number of tuples of STAYTABLE in IData is more than

that in GData.

The performance of Query 2, 3, and 4 is shown in Figure 25-(b), (c), and (d). However, most

cases of RFID-Cuboid do not finish within 2 hours. They are denoted by X in a rectangle. For

example,¥ : X in a rectangle on the horizontal axis 24 means that the¥ approach does not

finish within 2 hours when the number of tuples is24 × 106. These queries are path oriented

retrieval queries. To process path oriented retrieval queries, RFID-Cuboid joins STAYTABLE

and MAPTABLE. MAP TABLE contains the mapping from GID to TAGID in RFID-Cuboid.

Since RFID-Cuboid uses the prefix encoding scheme, it needs string comparisons to process the

join between STAYTABLE and MAP TABLE. Therefore, for path oriented retrieval queries,

our approach has a much better performance than RFID-Cuboid.

November 20, 2009 DRAFT

33

0

2

4

6

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

2000

4000

6000

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

400

800

1200

1600

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData

(a) Query 1 (c) Query 3

(d) Query 4 (e) Query 5

(b) Query 2

0

4000

8000

12000

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

�����
�����
��� ������

�����
��� �

0

2000

4000

6000

8000

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

�����
�����
��� �

�����
��� ������

Fig. 25. Execution Time for Query 1, 2, 3, 4, and 5

The performance of Query 5 is shown in Figure 25-(e). Although RFID-Cuboid in GData

shows a much better performance than that in IData for the cases of Query 2, 3, and 4, the

performance gap between GData and IData in RFID-Cuboid does not have a big difference in

Figure 25-(e). On the contrary, the performance in IData is better than that in GData. Query 5

has the time condition (StartTime<2000). Therefore, in IData, many tuples of STAYTABLE

are removed by the condition and tuples to join are reduced significantly. Also, the number of

results in IData is less than that in GData. Therefore, the performance gap between IData and

GData for RFID-Cuboid is small for Query 5.

In Query 6, 12 and 15 (Figure 26-(a), Figure 27-(b) and Figure 27-(e)), RFID-Cuboid is better

than our approach. The path condition in Query 6, 12, and 15 has only one location. Since RFID-

Cuboid focuses on groups in which products move together, RFID-Cuboid is efficient in the case

of getting information at one location. However, in supply chain management, it is important to

analyze the object transition. For queries related to the object transition (Query 3, 4, 5, 7, 8, 9, 10,

11, 13, and 14), our approach is superior to RFID-Cuboid. However, for Query 2, our approach

has a better performance than RFID-Cuboid, although Query 2 is used to get information at one

location. This is because RFID-Cuboid uses the string comparison to get tags.

November 20, 2009 DRAFT

34

(a) Query 6 (b) Query 7 (c) Query 8

(d) Query 9 (e) Query 10

0

1

2

3

4

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

100

200

300

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

500

1000

1500

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

5

10

15

20

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

50

100

150

200

250

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

Fig. 26. Execution Time for Query 6, 7, 8, 9, and 10

Consider the query performance of Query 6, 12, and 15 (Figure 26-(a), Figure 27-(b) and

Figure 27-(e)) versus that of Query 7, 8, 10, 11, 13, and 14 (Figure 26-(b), Figure 26-(c),

Figure 26-(e), Figure 27-(a), Figure 27-(c) and Figure 27-(d)). The path condition in Query

6, 12 and 15 has only one location while the path condition in Query 7, 8, 10, 11, 13, and

14 has multiple locations. Since our approach uses Element List Encoding Number and Order

Encoding Number, our approach can easily find paths, although the path condition has many

ancestor-descendant relationships. Therefore, in Query 7, 8, 10, 11, 13, and 14, our approach is

better than RFID-Cuboid.

Since Query 9 has the time information, our approach joins TAGTABLE and TIME TABLE.

Therefore, our approach has a little better performance than RFID-Cuboid for GData, as shown

in Figure 26-(d).

Consequently, our approach is superior to RFID-Cuboid in most cases. Also, our approach is

less sensitive than RFID-Cuboid for the grouping factor. Therefore, our approach can be used

in a wide range of applications. For the path oriented aggregate query whose path condition has

only one location, our approach may be worse than RFID-Cuboid. However, since it is important

to analyze the object transition in supply chain management, our approach will be more useful.

November 20, 2009 DRAFT

35

(a) Query 11 (b) Query 12 (c) Query 13

(d) Query 14 (e) Query 15

0

100

200

300

400

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

100

200

300

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

200

400

600

800

1000

1200

1400

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

2

4

6

8

10

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

0

200

400

600

800

1000

1200

1400

6 12 18 24 30

ex
ec

ut
io

n
ti

m
e

(s
ec

)

the number of tuples (unit: 106)

Cuboid-GData
Cuboid-IData
Path-GData
Path-IData

Fig. 27. Execution Time for Query 11, 12, 13, 14, and 15

IX. CONCLUSION

We expect that RFID technology will revolutionize supply chain management. In supply chain

management, a large amount of RFID data is generated. However, since RFID data has flow

information that is different from the traditional data, it is difficult to store data and process

queries. Therefore, we propose an efficient storage scheme and efficient query processing for

supply chain management.

The proposed approach in this paper is very efficient in tracking and analyzing the flow

of products. We believe that it is useful for real-life logistic applications after conducting

experiments with data sets based on a real-life logistic example. In addition, we devise a method

that divides a path. Therefore, our approach can be implemented on an RDBMS easily, even if

long paths exist in some logistic applications and we cannot store a large number in one attribute.

Therefore, our approach is efficient and practical. Its application is not limited to supply chain

management nor logistic applications. It will be useful for many applications that need flow-

based processing. However, since we did not consider a distributed environment, all RFID data

should be collected in the central server. Data collection in the central server may be difficult

in some environments. Therefore, in the future, we plan to adapt and develop our approach in

November 20, 2009 DRAFT

36

a distributed environment.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Re-

search Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology

(grant number 2009-0081365).

REFERENCES

[1] Chinese remainder theorem. http://en.wikipedia.org/wiki/Chineseremaindertheorem.

[2] Epc global. http://www.epcglobalinc.org/home.

[3] Xpath. http://www.w3.org/TR/xpath.

[4] R. Agrawal, A. Cheung, K. Kailing, and S. Schönauer. Towards traceability across sovereign, distributed rfid databases.

In IDEAS, 2006.

[5] Y. Bai, F. Wang, and P. Liu. Efficiently Filtering RFID Data Streams. InVLDB Workshop on Clean Databases, 2006.

[6] Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu. Rfid data processing with a data stream query language. InICDE, 2007.

[7] C. Ban, B. Hong, and D. Kim. Time Parameterized Interval R-Tree for Tracing Tags in RFID Systems. InDEXA, pages

503–513, 2005.

[8] C. Bornḧovd, T. Lin, S. Haller, and J. Schaper. Integrating Automatic Data Acquisition with Business Processes -

Experiences with SAP’s Auto-ID Infrastructure. InVLDB, pages 1182–1188, 2004.

[9] D. J. Bowersox and D. J. Closs.Logistical Management. McGraw-Hill, 1996.

[10] P. Buneman, M. Grohe, and C. Koch. Path Queries on Compressed XML. InVLDB, pages 141–152, 2003.

[11] S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. Sarma. Managing RFID data. InVLDB, pages 1189–1195,

2004.

[12] L. Forlizzi, R. H. G̈uting, E. Nardelli, and M. Schneider. A Data Model and Data Structures for Moving Objects Databases.

In SIGMOD, pages 319–330, 2000.

[13] H. Gonzalez, J. Han, and X. Li. FlowCube: Constructuing RFID FlowCubes for Multi-Dimensional Analysis of Commodity

Flows. In VLDB, pages 834–845, 2006.

[14] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and Analyzing Massive RFID Data Sets. InICDE, 2006.

[15] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A Foundation

for Representing and Querying Moving Objects.ACM Transactions on Database Systems (TODS), 25(1):1–42, 2000.

[16] H. Haidarian-Shahri, G. Namata, S. Navlakha, A. Deshpande, and N. Roussopoulos. A Graph-based Approach to Vehicle

Tracking in Traffic Camera Video Streams. InWorkshop on Data Management for Sensor Networks, in conjunction with

VLDB (DMSN), pages 19–24, 2007.

[17] J. E. Hoag and C. W. Thompson. Architecting rfid middleware.IEEE Internet Computing, 10(5):88–92, 2006.

[18] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Supporting RFID-based Item Tracking Applications in Oracle DBMS

Using a Bitmap Datatype. InVLDB, pages 1140–1151, 2005.

[19] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive Cleaning for RFID Data Streams. InVLDB, pages 163–174,

2006.

November 20, 2009 DRAFT

37

[20] N. K. Kanhere and S. T. Birchfield. Real-Time Incremental Segmentation and Tracking of Vehicles at Low Camera Angles

Using Stable Features.IEEE Transactions on Intelligent Transportation Systems (TITS), 9(1):148–160, 2008.

[21] Z. Kim and J. Malik. Fast Vehicle Detection with Probabilistic Feature Grouping and its Application to Vehicle Tracking.

In International Conference on Computer Vision (ICCV), pages 524–531, 2003.

[22] C.-H. Lee and C.-W. Chung. Efficient storage scheme and query processing for supply chain management using rfid. In

SIGMOD, 2008.

[23] Q. Li and B. Moon. Indexing and querying xml data for regular path expressions. InVLDB, 2001.

[24] W. Lian, N. Mamoulis, D. W.-L. Cheung, and S.-M. Yiu. Indexing Useful Structural Patterns for XML Query Processing.

IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(7):997–1009, 2005.

[25] J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: A queriable compression for xml data. InSIGMOD, 2003.

[26] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Continuous Queries in Spatio-temporal

Databases. InSIGMOD, pages 623–634, 2004.

[27] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches to the Indexing of Moving Object Trajectories. InVLDB,

pages 395–406, 2000.

[28] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile Objects in Spatio-Temporal Databases. InSSTD, pages 59–78,

2001.

[29] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A Deferred Cleansing Method for RFID Data Analytics. InVLDB,

pages 175–186, 2006.

[30] P. Rao and B. Moon. Prix: Indexing and querying xml using prufer sequences. InICDE, 2004.

[31] K. H. Rosen.Discrete Mathematics and Its Applications. McGraw-Hill, 2003.

[32] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries. InVLDB,

pages 431–440, 2001.

[33] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang. Storing and querying ordered

xml using a relational database system. InSIGMOD, 2002.

[34] P. M. Tolani and J. R. Haritsa. XGRIND: A Query-Friendly XML Compressor. InICDE, pages 225–234, 2002.

[35] F. Wang and P. Liu. Temporal Management of RFID Data. InVLDB, pages 1128–1139, 2005.

[36] F. Wang, S. Liu, P. Liu, and Y. Bai. Bridging physical and virtual worlds: Complex event processing for rfid data streams.

In EDBT, 2006.

[37] H. Wang, S. Park, W. Fan, and P. S. Yu. Vist: A dynamic index method for querying xml data by tree structures. In

SIGMOD, 2003.

[38] W. Wu, W. Guo, and K.-L. Tan. Distributed Processing of Moving K-Nearest-Neighbor Query on Moving Objects. In

ICDE, pages 1116–1125, 2007.

[39] X. Wu, M.-L. Lee, and W. Hsu. A prime number labeling scheme for dynamic ordered xml trees. InICDE, 2004.

[40] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On supporting containment queries in relational

database management systems. InSIGMOD, 2001.

November 20, 2009 DRAFT

38

Chun-Hee Lee received the B.S. degree in computer science from the Korea Advanced Institute of

Science and Technology (KAIST), Korea, in 2003. He is currently a Ph.D. Candidate at KAIST. His

research interests include sensor network and stream data management.

Chin-Wan Chung received the B.S. degree in electrical engineering from Seoul National University,

Korea, in 1973, and the Ph.D. degree in computer engineering from the University of Michigan, Ann Arbor,

USA, in 1983. From 1983 to 1993, he was a Senior Research Scientist and a Staff Research Scientist in the

Computer Science Department at the General Motors Research Laboratories (GMR). While at GMR, he

developed Dataplex, a heterogeneous distributed database management system integrating different types

of databases. Since 1993, he has been a professor in the Department of Computer Science at the Korea

Advanced Institute of Science and Technology (KAIST), Korea. At KAIST, he developed a full-scale object-oriented spatial

database management system called OMEGA, which supports ODMG standards. His current major project is about mobile social

networks in Web 3.0. He was in the program committees of major database conferences including ACM SIGMOD, VLDB,

and IEEE ICDE. He was an associate editor of ACM TOIT, and is an associate editor of WWW Journal. His current research

interests include the semantic Web, mobile Web, sensor network and stream data management, and multimedia databases. More

information is available at http://islab.kaist.ac.kr/chungcw.

November 20, 2009 DRAFT

